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EXECUTIVE SUMMARY 

The alkali–silica reaction (ASR) is a phenomenon that leads to material degradation in concrete, resulting 

in the formation of microcracks and cracks. This deterioration causes a loss of mechanical properties, 

concrete damage, and even corrosion. To address this issue, ultrasonic nondestructive evaluation can be 

employed as a technique for long-term monitoring of ASR development and condition assessment of 

concrete subjected to ASR. However, traditional approaches typically utilize only a few wave parameters, 

such as wave velocity or amplitude, to characterize ASR-induced concrete damage while disregarding the 

majority of information present in the ultrasonic signals. 

In this study, four machine learning (ML) models were established and comparatively evaluated to establish 

a relationship between concrete expansion due to ASR and ultrasonic signals. Two concrete specimens 

intentionally designed to exhibit ASR development were cast and conditioned in a curing chamber to 

accelerate ASR. Over a span of more than 500 days, ultrasonic signals and expansion data were collected 

continuously on these specimens. From the ultrasonic signals, wave velocity and 12 wavelet features were 

extracted and utilized as inputs for three ML models: linear regression, support vector regression, and 

shallow neural network. Training these models involves employing data from one ASR specimen while 

testing was performed using data from the other ASR specimen for expansion prediction. In the case of the 

deep neural network model, preprocessed time domain ultrasonic signals were utilized as inputs without 

the need for feature engineering. All models underwent optimization based on the training data. 

The results demonstrated that the linear regression, support vector regression, and shallow neural network 

models exhibited poor performance on the test data, yielding prediction R2 values smaller than 0.71 and 

root mean square error (RMSE) values larger than 0.09%. Consequently, a feature selection process was 

implemented, leading to the identification of six features that displayed the highest correlation coefficients 

with the expansion. By employing these selected six features, all three models exhibited improved 

performance, with higher R2 values and smaller RMSE values. Notably, the choice of ML model did not 

yield significant differences in the results, indicating that the selected features exerted a greater influence 

on prediction accuracy than the specific ML algorithm used. Furthermore, the deep neural network model 

produced comparable prediction results to the three models with feature selection, suggesting that deep 

learning models possess the potential to achieve accurate predictions based on ultrasonic signals without 

the need for feature engineering. 
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1. INTRODUCTION 

The alkali–silica reaction (ASR) is a type of material degradation commonly observed in concrete 

infrastructure. It occurs when reactive vitreous or poorly crystalline silica—such as chert or 

microcrystalline quartz—present in the aggregate reacts with alkalis in the cement. This reaction generates 

hydrated sodic or potassium-bearing calcium-silicates gels, known as ASR gel [1]. The ASR gel absorbs 

water and expands within the material's porosity and existing cracks, creating internal pressure and causing 

expansion. Eventually, this leads to the formation and propagation of additional cracks in the concrete. 

Consequently, ASR results in concrete deterioration, loss of mechanical properties, and increased diffusion 

of aggressive substances. Ultimately, this can lead to corrosion of steel reinforcement and can detrimentally 

affect the structure’s service life.  

Currently, ASR condition assessment programs primarily rely on visual inspection. Although concrete 

coring with subsequent petrographic examination [2] is a reliable method for assessing the presence of 

ASR, visual inspection remains subjective and does not provide accurate information about internal 

concrete damage. Moreover, because of the petrographic examination process, the condition assessment 

procedure involving concrete coring is time-consuming, labor-intensive, and destructive. To address these 

limitations, nondestructive evaluation (NDE) methods, such as ultrasonic testing, offer a promising solution 

for evaluating ASR damage in concrete. Various ultrasonic wave parameters, including wave velocity, 

attenuation, and amplitude, have been used to quantify ASR damage [3]–[5]. As ASR develops, the 

amplitude and velocity of ultrasonic waves propagating through the concrete decrease, whereas the wave 

attenuation increases [6]. 

 

Since the advent of AI, machine learning techniques (ML) have been frequently employed for the 

automated analysis of ultrasonic data to characterize the condition and remaining service life of concrete 

structural elements. Previous works have mainly focused on using ML algorithms to predict concrete 

strength based on single wave parameters, such as ultrasonic pulse velocity (UPV) and signal amplitude 

[7]–[10]. However, these approaches utilize only wave velocity information, neglecting other valuable 

information embedded in the ultrasonic signals, particularly in the frequency domain. Indeed, valuable 

lessons can be learned from studying the ultrasonic NDE approaches used for the automatic detection of 

welding defects; these NDE techniques use a variety of features extracted from ultrasonic signals, such as 

wave parameters, statistical features, and wavelet features [11]–[13]. Thus, similar NDE methodologies can 

be adopted to extract features from ultrasonic signals in concrete with ASR damage, considering that the 

ultrasonic signal in damaged concrete is more complex than that in welding defects. Recent studies have 

also applied ML in the ultrasonic NDE of concrete with ASR damage [14]–[16]. 

 

In this study, several ML models were investigated for predicting ASR expansion using long-term 

monitoring ultrasonic signals obtained from two concrete samples subjected to ASR. The expansion level 

serves as a measure of the extent of ASR damage in real-world applications. Wave parameters and wavelet 

features are extracted from the ultrasonic signals and used as input for the ML models. The data from one 

of the concrete specimens were utilized as the training dataset because this specimen exhibits a large final 

expansion during the long-term experiment. The data from the second specimen were used as the testing 

dataset. Feature selection was employed to examine the impact of features on the performance of machine 

learning models. A deep learning model was also investigated using the time domain signal as the input 

without requiring explicit feature engineering or user input.  
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2. CONCRETE SAMPLES AND ULTRASONIC DATA COLLECTION 

Two concrete samples (i.e., “ASR” and “ASR-2D”), as shown in Figure 1, were cast with the same 

0.3 × 0.3 × 1.12 m dimensions. The ASR and ASR-2D samples used the same mix design, which contains 

a reactive coarse aggregate. Along with the reactive coarse aggregate, NaOH was added to boost the alkali 

content to 1.50% Na2Oeq by mass of cement, which promotes rapid ASR in the concrete samples; the mix 

design is shown in Table 1. Whereas no reinforcing steel bars were added to the ASR sample to allow free 

expansion, #6 headed steel rebar was installed in the ASR-2D sample in the longitudinal  

(Y-direction) and vertical (Z-direction) directions to confine the expansion in these directions. More details 

about the concrete samples can be found in the study by Malone [17], [18]. After 28 days, the samples were 

moved to a conditioning chamber, where they were kept at 38°C and 90% humidity for more than 500 days 

to accelerate the ASR development. Demountable mechanical strain gauge (DEMEC) targets were installed 

on each surface, and the expansions in the three directions were measured using DEMEC strain gauges 

(Mayes Instruments Limited, United Kingdom) every two weeks when the chamber was temporarily shut 

down. The volumetric expansion is the summation of the expansions in the three directions. Figure 2 shows 

the volumetric expansion histories of the ASR and ASR-2D samples for the experiment duration (i.e., 

552 days). Numerous surface cracks developed on the ASR and ASR-2D samples, which indicate the 

success of the ASR promotion in the samples. 

 

Table 1. Mix design of the ASR samples. 

Component Quantity 

Cement (kg/m3) 350 

Water (kg/m3) 175 

Coarse aggregate (kg/m3)  1039 

Fine aggregate (kg/m3) 839 

Water reducer (mL/kg) 2.3 

50/50 NaOH (kg/m3) 9.31 

 

 

Figure 1. ASR and ASR-2D concrete samples with reactive coarse aggregates. 

 

ASR-2D ASR 
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X 
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Figure 2. Volumetric expansions for the ASR and ASR-2D samples. 

A pair of ultrasonic transducers was installed on the concrete sample permanently for long-term monitoring 

(see Figure 3). A 15 mm diameter piezoceramic disc (STEMINC) was used as the transmitter, and an 

acoustic emission (AE) sensor (R15I-AST, Physical Acoustic, New Jersey) with a center frequency of 150 

kHz was used as the ultrasonic receiver. A multiplexer was used to switch between different transmitter 

and receiver pairs. The received signals were digitized by an oscilloscope (PICO4262) with a sampling rate 

of 10 MHz and averaged by 100 times to increase the signal-to-noise ratio. The ultrasonic signal was 

collected every 12 hours, along with temperature measurements. Data were not collected during the 

conditioning chamber shutdowns. More details about the ultrasonic monitoring system can be found in 

other work by Sun [19]. Overall, 644 ultrasonic signals were collected from the ASR sample, and 620 

signals were collected from the ASR-2D sample. Since more ultrasonic signals were recorded than 

expansion measurements (29 data points), the expansion corresponding to each ultrasonic signal was 

calculated using linear interpolation. This linear interpolation is justified because the conditioning 

environment was consistent between two expansion measurements. 

 

 

Figure 3. Diagram of the ultrasonic monitoring system for the concrete samples. 
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3. ULTRASONIC DATA PROCESSING AND FEATURE EXTRACTION 

Figure 4 shows the time domain signals at the concrete age of 60, 260, and 460 days for the ASR sample. 

The first signal (Figure 4(a)) was collected at an early age when the concrete sample exhibited a relatively 

small expansion; at this time, the ASR may not have initiated, and the signal still contains high-frequency 

components. In the signal collected at 60 days, the peak amplitude occurs at approximately 0.1 μs. The 

second signal (Figure 4(b)) was collected at 260 days, and the concrete sample exhibited relatively large 

expansion due to ASR. The peak amplitude occurs around 0.25 μs, and fewer high-frequency components 

are observed in the signal, as compared to Figure 4(a). Additionally, the signal amplitude is much lower 

than the first signal since more energy is attenuated by the concrete cracks resulting from the ASR induced 

expansion. The third signal (Figure 4(c)) was collected at the late stage of the ASR development with large 

concrete expansion. The signal also shows a low-amplitude and few high-frequency components. These 

time domain signals indicate that the ultrasonic signal contains useful information that is related to the 

status of the ASR development, which is measured by the volumetric expansion. 

 

 

 

 

Figure 4. Time domain signals at different concrete ages: (a) 60, (b) 260, and (c) 460 days. 

In this work, several features were extracted from the time domain signals for ML model training and 

testing. These features, along with the expansion data from the ASR sample, are used for model training, 

and the data collected from the ASR-2D sample will be used for testing the ML models. The data from the 

ASR and ASR-2D samples are used for training and testing, respectively, because the ASR sample exhibits 

larger expansion than the ASR-2D sample, thus ensuring that model testing on the ASR-2D sample requires 

only interpolation and no extrapolation. Two types of features are extracted from the time domain signal. 

The first is wave velocity, which is directly related to the crack density and concrete modulus. The second 

parameter extracted includes the wavelet features calculated via discrete wavelet transform, which 

(a) 

(b) 

(c) 
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decomposes the time domain signal into signals in different frequency bands. After the decomposition, 

wavelet features are calculated for each band signal.  

3.1 ULTRASONIC WAVE VELOCITY 

Wave velocity is the most commonly used parameter in ultrasonic nondestructive testing for material 

characterization. As the ASR sample exhibits gradual cracking, the wave propagation velocity is reduced. 

In this work, wave velocity is extracted as one of the features used for damage assessment. The Akaike 

information criterion (AIC) picker was used to detect the arrival time automatically. The AIC picker method 

was originally developed for analyzing the P-wave velocity of seismic waves [20]. The AIC values are 

calculated for the first 1,000 points of the time domain signal, and the point with the lowest AIC value 

represents the first arrival time, which is shown in Figure 5. According to the AIC value curve, the first 

arrival time is 64.3 μs, when the AIC curve has the smallest value. The wave velocity for the ASR and 

ASR-2D samples are shown in Figure 6. Both the ASR and ASR-2D samples exhibit a decreasing velocity 

during the monitoring period. The spikes on the curves are due to the AIC calculation error where the signal 

is noisy. 

  

 

Figure 5. First arrival time in the time domain signal (top) and the AIC values calculated (bottom). 

 

Figure 6. Wave velocity histories for the ASR and ASR-2D samples. 

3.2 Wavelet features  

Aside from the wave velocity, other features can be extracted from the ultrasonic signals in both the time 

and frequency domains. Wavelet transform is the technique that processes a signal in the time and frequency 

domains and has been widely used to extract features from ultrasonic signals in the NDT of welding defects 
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[11], [21]. Discrete wavelets transform (DWT) is an algorithm that can be used to quickly obtain the wavelet 

transform coefficients of a discrete time signal. The algorithm decomposes the ultrasonic signal with a low-

pass and high-pass filter into its coarse approximation coefficient cA1 and detail coefficient cD1. The 

bandwidth is [0, f/2] for the approximation coefficient cA1 and [f/2, f] for the detail coefficient cD1, and f is 

half of the sampling rate. This process is repeated until the desired decomposition level is achieved. The 

wavelet feature extraction is based on these detail coefficients. 

The ultrasonic signal at the conditioning age of 54 days in Figure 7(a) was decomposed into seven levels 

with the MATLAB function modwt and “db4” wavelet. Before implementing the DWT, each signal is 

normalized by its amplitude. Because the energy of the original ultrasonic signal is in the frequency range 

of 40 to 250 kHz (Figure 7(b)), only the last three levels of the detail coefficients were used for the feature 

extraction. Figures 7(c)–(e) show the detail coefficients cD5, cD6, and cD7 from DWT. Coefficients cD5 and 

cD6 have a higher amplitude than cD7, which indicates that the original ultrasonic signal has more energy 

in the high-frequency range (>78 kHz) than at the early conditioning age. For each of the three detail 

coefficients, four features were extracted. First was the mean amplitude,  

𝐴𝑚 =
1

𝑛
∑ |𝑥𝑖|
𝑛
𝑖=1 , where xi represents the amplitude of each sample in the signal, and n is the total number 

of samples. As the ASR damage accumulates, the energy decreases in the high-frequency bandwidth and 

increases in the low-frequency bandwidth. Therefore, the mean value of the detail coefficient will have the 

same trend as the energy in different bandwidths. The second feature is the maximum amplitude, 𝐴𝑚𝑎𝑥. 

Similar to the mean amplitude, the maximum amplitude also has the same trend as the energy in different 

bandwidths. The third feature is the total energy, 𝐸 = ∑𝑥𝑖
2. The energy ratio in the low-frequency 

bandwidth increases as the ASR develops. The fourth feature is the attenuation coefficient, which is 

calculated from the three coefficients by fitting the signal after the maximum amplitude using an 

exponential decay function. Thirteen features were extracted from each ultrasonic signal: twelve wavelet 

features and wave velocity.  

 

Figure 7. (a) Time domain signal, (b) frequency spectrum, (c) DWT coefficient cD5 (156–312 kHz), (d) DWT 

coefficient cD6 (78–156 kHz), and (e) DWT coefficient cD7 (39–78 kHz). 

 
  



 

7 

4. MACHINE LEARNING MODELS 

In this work, several models were used for the ASR expansion predictions, including linear regression, 

support vector regression, shallow neural network, and deep neural network approaches. The deep neural 

network uses the time domain signals as the feature input, whereas the other models use the extracted 13 

features as the model input. Linear regression is a linear statistical approach to model the relationship 

between the response and one or more variables. It is represented by the equation below: 

𝑦 = 𝑋𝛽 + 𝜀,                                                                              (1) 

where 𝑦 is the response (i.e., the volumetric expansion of the concrete samples), 𝑋 is the vector of the 

variables (i.e., the extracted features), 𝛽 is the parameter vector, and 𝜀 is the error term. In this work, the 

parameter vector 𝛽 is fitted using the data from the ASR sample, and the fitted linear regression model is 

tested using the ASR-2D sample. The linear regression model is optimized in MATLAB, and the final 

model contains an intercept term, linear and squared terms for each variable, and all products of pairs of 

distinct variables. 

Support vector regression (SVR) is an ML algorithm used for regression tasks. It is based on the principles 

of support vector machines (SVMs), which are primarily used for classification tasks. SVM aims to find a 

hyperplane that best fits the training data while maximizing the margin (distance) between the hyperplane 

and the closest data points, known as support vectors. The key idea behind SVM is to map the input data 

into a higher-dimensional feature space, where a linear relationship can be more easily identified. SVM 

allows for nonlinear relationships by using kernel functions to implicitly map the data into this higher-

dimensional space. The SVR model seeks to minimize the prediction error while controlling the deviations 

within a predefined margin called the epsilon tube. It strives to find a hyperplane that maintains a balance 

between fitting the training data and generalizing well to unseen data. The objective of the model is to 

minimize both the training error and the complexity of the solution, known as the regularization term. The 

SVM model was optimized in MATLAB using the ASR sample data. The optimized SVR model has a 

Gaussian kernel function with a kernel scale of 36.1, box constraint of 689.0, and epsilon tube width of 

0.000146.  

An artificial neural network is a connected graph with multiple layers, and each layer contains multiple 

nodes (neurons). A shallow feed-forward neural network has a relatively simple structure, with one input 

layer, one to two intermediate (hidden) layers, and one output layer. Lippmann [22] suggested that a multi-

layer perceptron with two hidden layers is sufficient for creating classification regions of any desired shape. 

Another critical hyperparameter is the activation function, which defines the output of the node given the 

input or a set of inputs. Typical activation functions include the Gaussian, sigmoid, hyperbolic tangent, and 

radial basis functions (RBF). The parameters in the hidden layers can be optimized to achieve the best 

model performance. The optimized neural network used in this work has two hidden layers, in addition to 

the input and output layers. The first hidden layer contains 16 neurons, and the second hidden layer has 8 

neurons with relu activation functions for both layers. A randomly selected 25% of the training data was 

used as the validation data.   

Deep neural networks (DNNs) are a relatively recent addition to ML and are essentially artificial neural 

networks with more than two hidden layers. Inputs to the neural network can be time domain–related 

features, frequency domain–related features, or wavelet features. The time domain signal or frequency 

spectrum is also used as input for the ML models. Figure 8 shows the network structure of the DNN used 

herein; it has three hidden layers with relu activation functions. The input layer has 512 neurons, and the 

second hidden layer has 128 neurons. The third and fourth hidden layer have 32 and 8 neurons, respectively. 

To prevent the overfitting of the DNN, dropout layers are added to the network. The first and second dropout 
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layer both have a dropout rate of 0.4, whereas the last one has a rate of 0.3. Since the original time domain 

signal contains 10,000 samples, it is too large to be used as the input. To reduce the computational cost, the 

original time domain signal is cropped to 7,000 by deleting 3,000 samples in the unimportant, tail region 

of the signal. Next, the cropped signal is downsampled to 512 samples with a ratio of 13. The original 

sampling rate is 10 MHz. After downsampling, the new sampling rate is approximately 769 kHz, which is 

large enough to accommodate a signal with a main frequency band of 50 kHz to 250 kHz.    

 

Figure 8. The network structure of the deep neural network model. 

 

5. RESULTS 

5.1 LR, SVR, AND SHALLOW NN WITHOUT FEATURE SELECTION 

The ASR sample dataset is initially utilized as training data to establish models based on linear regression 

(LR), SVR, and shallow neural networks, incorporating all 13 variables. These developed models are 

subsequently put to the test with datasets derived from the ASR-2D sample. Figure 9 to Figure 11 illustrate 

the measured versus predicted expansion through different modeling techniques. In Figure 9, the LR model 

shows a good correlation, denoted by a high R2 (i.e., R2 = 0.9982) value, between the predicted and actual 

expansion in the ASR sample. Conversely, when applied to the ASR-2D data, the LR model performs sub-

optimally, as indicated by a reduced R2 (i.e., R2 = 0.7070) and increased root mean square error (RMSE). 

Figure 10 delineates the correlation of measured and predicted expansion utilizing the SVR model on both 

ASR and ASR-2D samples. Whereas the training phase (Figure 10(a)) presents a relatively high R2
 of 

0.9710 and a relatively small RMSE, the testing phase reveals a smaller R2 and larger error than that seen 

in the LR model (i.e., R2 = 0.3245 and RMSE = 0.1444%). This result suggests an overfitting situation for 

the SVR model, stemming from the application of the 13 input variables, thus leading to poor generalization 

when applied to the testing data. The shallow neural network’s results, displayed in Figure 11, mimic those 

of the other two models: high R2 and low RMSE in the training phase. However, it demonstrates 

disappointing performance in the testing phase, marked by a decreased R2 and an increased RMSE. These 

outcomes suggest that even with a sophisticated neural network when employing unrelated features, the 

performance of the ML algorithm may still falter. Interestingly, despite its lower complexity, the LR model 

could potentially deliver superior results compared to the neural network. 
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Figure 9. Measured expansion vs. predicted expansion using linear regression on the (a) ASR sample 

(training) and (b) ASR-2D sample (testing). 

 

Figure 10. Measured expansion vs. predicted expansion using the SVR model on the (a) ASR sample, and (b) 

ASR-2D sample. 

 

Figure 11. Measured expansion vs. predicted expansion using the shallow neural network model on the (a) 

ASR, and (b) ASR-2D samples. 

 

5.2 LR, SVR, AND SHALLOW NN WITH FEATURE SELECTION  

Because the SVR and shallow neural network models exhibit sufficient performance on the training data 

but show large prediction errors using the testing data, feature selection should be used to avoid overfitting 

and decrease the model variance. Correlation coefficients between the 13 features (wave velocity and detail 

coefficients) and the response (i.e., expansion) are summarized in Table 2 for the training (i.e., ASR) and 

testing (i.e., ASR-2D) datasets. The wave velocity has a high correlation with the volumetric expansion for 

both datasets. The features that have correlation coefficients larger than 0.5 for both datasets were selected. 
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Therefore, features 1, 3, 6, 7, 10, 11 were selected as input to the ML models, including the velocity, mean 

amplitude in the middle-frequency range (78 kHz – 156 kHz), maximum amplitude in the middle (78 kHz 

– 156 kHz) and low-frequency (39 kHz – 78 kHz) range, energy ratio in the frequency (39 kHz – 78 kHz) 

range, and attenuation in the high-frequency range (156 kHz – 312 kHz). Using these six features, the LR, 

SVR, and shallow neural network models performed better with adequate prediction accuracy. The training 

results and testing results with feature selection are shown in Figure 12 to Figure 14. In Figure 12, the 

training results exhibit a relatively higher R2 and smaller RMSE compared to the results in Figure 9 using 

the same LR model. By using the features with relatively high correlations to the response, the testing 

results of the SVR model in Figure 13 were significantly improved, with an R2 from 0.3245 to 0.8946 and 

an RMSE from 0.1444% to 0.0570%. The performance of the shallow neural network was also improved 

after using the selected features as the input. The R2 and RMSE for all models without and with feature 

selection are summarized in Table 2. After feature selection, the R2 for the training dataset has decreased 

for all three models, which might be an indication of elimination of overfitting. Compared with the 

prediction results without feature selections, all three models have improved prediction results on the ASR-

2D sample with all selected six features. Thus, it can be concluded that the model selected may not 

significantly affect the prediction results; however, the features used will largely affect the model 

performance on the prediction.  

Table 2. Absolute correlation coefficients between features and responses. 

Feature Vel. 
Mean amplitude Max amplitude Energy Attenuation 

cD5 cD6 cD7 cD5 cD6 cD7 cD5 cD6 cD7 cD5 cD6 cD7 

Index 1 2 3 4 5 6 7 8 9 10 11 12 13 

ASR 0.92 0.52 0.87 0.67 0.83 0.76 0.86 0.66 0.41 0.84 0.81 0.43 0.05 

ASR-2D 0.90 0.05 0.65 0.03 0.38 0.58 0.64 0.23 0.49 0.59 0.83 0.68 0.26 

 

 

Figure 12. Measured expansion vs. predicted expansion using linear regression with feature selection on the 

(a) ASR sample (training) and (b) ASR-2D sample (testing). 

 

Figure 13. Measured expansion vs. predicted expansion using SVR with feature selection on the (a) ASR 

sample (training) and (b) ASR-2D sample (testing). 
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Figure 14. Measured expansion vs. predicted expansion using shallow neural network with feature selection 

on the (a) ASR sample and (b) ASR-2D sample. 

Table 3. Prediction results of different learning models. 

Method 
ASR (training) ASR-2D (testing) 

R2 RMSE R2 RMSE 

LR 0.9982 0.0106% 0.7070 0.0949% 

LR with feature selection 0.9619 0.0483% 0.7822 0.0818% 

SVR 0.9710 0.0421% 0.3245 0.1444% 

SVR with feature selection 0.9506 0.0550% 0.8946 0.0570% 

Shallow NN 0.9634 0.0473% 0.6642 0.1018% 

Shallow NN with feature selection 0.9297 0.0656% 0.8675 0.0640% 

 

5.3 DEEP NEURAL NETWORK  

The deep neural network model utilizes time domain signals as input features. In Figure 15, the learning 

curves (i.e., loss histories) of the deep neural network trained with the ASR sample data are depicted. After 

100 epochs, both the training and validation loss reached a stable state with negligible values, suggesting a 

well-fitting DNN model. Figure 16 illustrates the training and testing results, presenting the measured 

expansion versus the predicted expansion. The training results exhibit a strong predictive capability, 

characterized by a high R2 value and a low RMSE. Similarly, the testing results displayed a favorable R2 

value and a small RMSE. Notably, the test results obtained using the DNN model were comparable to the 

prediction results obtained with linear regression and feature selection, exhibiting similar R2 and RMSE 

values. An important advantage of the DNN is its ability to achieve such performance without requiring 

feature engineering, encompassing feature extraction and feature selection. This finding underscores that 

the DNN can attain prediction performance on par with conventional regression models while obviating the 

need for laborious feature engineering processes. In this work, only the time domain signal was used as the 

input of the deep learning model. The frequency spectrum can also be used as the input of the deep learning 

model.  



 

12 

 

Figure 15. The learning curve of the DNN model trained with ASR sample data. 

 

Figure 16. Measured expansion vs. predicted expansion using deep neural network on the (a) ASR sample 

and (b) ASR-2D sample. 

6. CONCLUDING REMARKS 

This study aimed to predict the volumetric expansion caused by ASR damage using ML models based on 

long-term ultrasonic monitoring signals. Ultrasonic signals and concrete expansion data were collected 

from two large concrete specimens with induced ASR. Four ML models were investigated in this work: 

LR, SVR, shallow neural network, and DNN approaches. For the first three models, a total of 13 features 

were extracted from the time domain signals of the ASR samples and used as input for training the ML 

models. The expansion prediction was tested on the ASR-2D sample. The extracted features included wave 

velocity and wavelet features calculated using wavelet transform of the time domain signals. In the case of 

the DNN model, the time domain signals themselves were used as input. Prior to inputting into the ML 

model, the signals were preprocessed through normalization and downsampling to reduce computational 

costs. All models were optimized using the training data from the ASR sample. 

The results indicate that the prediction performance on the ASR-2D sample by the LR, SVR, and shallow 

neural network models were unsatisfactory, as evidenced by low R2 values and large RMSE values  

(Table 3). The extracted wave velocity exhibits poor accuracy due to transducer reinstallation during the 

monitoring period and the presence of significant noise in some ultrasonic signals. The inclusion of all 13 

features in the three regression models resulted in overfitting. However, after performing feature selection, 

six features were selected as the inputs, leading to improved performance of the three regression models 

with R2 values above 0.78 and RMSE values below 0.082%. The performance of the three models did not 
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exhibit significant differences. Consequently, it can be concluded that the selection of features used in ML 

models has a greater impact on performance than the choice of a model when predicting expansion based 

on ultrasonic signals. The DNN employed time domain signals directly as input, eliminating the need for 

feature extraction and selection. Notably, the model’s performance was found to be comparable to that of 

other regression models, such as LR, SVR, and shallow neural networks. This observation highlights the 

potential of the deep learning model as a reliable prediction tool for assessing concrete sample damage 

through ultrasonic NDE signal processing. 

It is important to note that the prediction procedure described in this study was justified for the ASR and 

ASR-2D samples, which shared the same mix design and underwent similar ASR development processes. 

However, it should also be acknowledged that this prediction procedure may not be reliably applicable if 

the two mix designs differ significantly. Future work will include the investigation of factors that affect 

the performance of the ML model for concrete damage assessment based on ultrasonic NDE data.   
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